Publications
Enhancing Performance on Seen and Unseen Dialogue Scenarios using Retrieval-Augmented End-to-End Task-Oriented System
Jianguo Zhang, Stephen Roller, Kun Qian, Zhiwei Liu, Rui Meng, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong
SIGDIAL, 2023
BOLAA: Benchmarking and Orchestrating LLM-augemented Autonomous Agents
Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng, Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese
ArXiv, 2023
Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization
Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese
ArXiv, 2023
DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI
Jianguo Zhang, Kun Qian, Zhiwei Liu, Shelby Heinecke, Rui Meng, Ye Liu, Zhou Yu, Huan Wang, Silvio Savarese, Caiming Xiong
ArXiv, 2023
REX: Rapid Exploration and eXploitation for AI Agents
Rithesh Murthy, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao Feng, Zeyuan Chen, Akash Gokul, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese
ArXiv, 2023
Towards More Robust and Accurate Sequential Recommendation with Cascade-guided Adversarial Training
Juntao Tan, Shelby Heinecke, Zhiwei Liu, Yongjun Chen, Yongfeng Zhang, Huan Wang
ArXiv, 2023
Deconfounded Causal Collaborative Filtering
Shuyuan Xu, Juntao Tan, Shelby Heinecke, Jia Li, and Yongfeng Zhang
ACM Transactions on Recommender Systems, 2023
Tackling Data Heterogeneity in Federated Learning with Class Prototypes
Yutong Dai, Zeyuan Chen, Junnan Li, Shelby Heinecke, Lichao Sun, Ran Xu
Proceedings of the AAAI Conference on Artificial Intelligence, 2023
Zero-shot Item-based Recommendation via Multi-task Product Knowledge Graph Pre-Training
Ziwei Fan, Zhiwei Liu, Shelby Heinecke, Jianguo Zhang, Huan Wang, Caiming Xiong
Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023
On the Unlikelihood of D-Seperation
Itai Feigenbaum, Huan Wang, Shelby Heinecke, Juan Carlos Niebles, Weiran Yao, Caiming Xiong, Devansh Arpit
ArXiv, 2023
Salesforce CausalAI Library: A Fast and Scalable Framework for Causal Analysis of Time Series and Tabular Data
Devansh Arpit, Matthew Fernandez, Chenghao Liu, Weiran Yao, Wenzhuo Yang, Paul Josel, Shelby Heinecke, Eric Hu, Huan Wang, Stephen Hoi, Caiming Xiong, Kun Zhang, Juan Carlos Niebles
ArXiv, 2023
Lightning Talk ⚡️
RGRecSys: A Toolkit for Robustness of Recommender Systems
Zohreh Ovaisi, Shelby Heinecke, Jia Li, Yongfeng Zhang, Elena Zheleva, and Caiming Xiong
Proceedings of the Fifthteenth ACM International Conference on Web Search and Data Mining, 2022
Dynamic Causal Collaborative Filtering
Shuyuan Xu, Juntao Tan, Zuohui Fu, Jianchao Ji, Shelby Heinecke, Yongfeng Zhang
Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022
Combining Data-driven Supervision with Human-in-the-loop Feedback for Entity Resolution
Wenpeng Yin, Shelby Heinecke, Jia Li, Nitish Keskar, Michael Jones, Shouzhong Shi, Stanislav Georgiev, Kurt Milich, Joseph Esposito, and Caiming Xiong
Data-Centric AI Workshop at NeurIPS, 2021

Communication-Aware Collaborative Learning
Avrim Blum, Shelby Heinecke, and Lev Reyzin
Proceedings of the AAAI Conference on Artificial Intelligence, 2021
Resilient Structures and Robust Machine Learning Algorithms
Shelby Heinecke
PhD Thesis, 2020
Crowdsourced PAC Learning under Classification Noise
Shelby Heinecke and Lev Reyzin
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 2019
On the Resilience of Bipartite Networks
Shelby Heinecke, Will Perkins, Lev Reyzin
In 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2018